COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
Masters Thesis	ChBE 600	3,4	3 + 0	0	60		

Prerequisites	-All Compulsary and elective courses
---------------	--------------------------------------

Language of Instruction	English
Course Level	Master's Degree (Second Cycle Programmes)
Course Type	Compulsory
Course Coordinator	
Instructors	Chem. Eng.Dept. Faculty
Assistants	
Goals	The aim of this course is the preparation and Defense of a Thesis in the field of Chemical Engineering
Content Fundemental principles of Chemical Engineering applications	

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Ability to propose and complete a scientific Thesis.	1,3,4,5,6,11	3	D
2) To have extensive knowledge about the thesis topic	2,7	3	D
3) Ability to defend the thesis	8,9	3	D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion
Assessment Methods:	A: Examination B.Testing, C: Homework D: Thesis Defence

COURSE CONTENT					
Week	Topics	Study Materials			
1	Thesis	Scientific Publications			
2	Thesis	Scientific Publications			
3	Thesis	Scientific Publications			
4	Thesis	Scientific Publications			
5	Thesis	Scientific Publications			
6	Thesis	Scientific Publications			
7	Thesis	Scientific Publications			
8	Thesis	Scientific Publications			
9	Thesis	Scientific Publications			
10	Thesis	Scientific Publications			
11	Thesis	Scientific Publications			
12	Thesis	Scientific Publications			
13	Thesis	Scientific Publications			
14	Thesis	Scientific Publications			

RECOMMENDED SOURCES					
Textbook	Relevant Scientific Publications				
Additional Resources					

MATERIAL SHARING					
Documents					
Assignments					

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Thesis Defense	1	100		
Total		100		
COURSE CATEGORY	Expertise			

	COURSE'S CONTRIBUTION TO PROGRAM					1	
No	No Program Learning Outcomes		Contribution				
140	Frogram Learning Outcomes			3	4 5		
1	Acquire expanded and in-depth information via performing scientific research in the field of Chemical Engineering, evaluate, interpret and implement knowledge.				X		
2	Be knowledgable in the contemporary techniques and methods applied in Chemical Engineering and their respective constraints.				X		
3	Be cognizant of the novel and developing applications of his/her profession, study and learn them as required.				X		
4	Formulate Chemical Engineering problems, develop methods to solve them and implement innovative techniques in solutions				X		
5	Design and conduct analytical modeling and experimental research, analyze and interpret complex problems encountered in this process.				X		
6	Develop novel and/or original ideas and methods; conceive innovative solutions in systems, component and process design				X		
7	Complete information via processing limited or incomplete data by the use of scientific methods and implement it; integrate knowledge from different disciplines				X		
8	Communicate in at least one foreign language at the level of European Language Portfolio B2 orally and in writing.				X		
9	Communicate stages and results of his/her studies in a systematic and clear manner orally or in writing in intra or interdisciplinary national and international settings.				X		
10	Defines societal and environmental aspects of Chemical Engineering applications						
11	Observe social, scientific and ethical values during collection, interpretation, and dissemination of data and in all professional activities.				X		
12	Lead multidisciplinary teams, develop solution methodologies for complex problems and take responsibility						

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Including the exam week: 14x Total course hours)	14	40	560			
Hours for off-the-classroom study (Pre-study, Project studies)	15	30	450			
Thesis	1		500			
Total Work Load			1510			
Total Work Load / 25 (h)			60.4			
ECTS Credit of the Course			60			